Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure calculations

Kohn–Sham density functional theory (KS-DFT) is a powerful method to obtain key materials’ properties, but the iterative solution of the KS equations is a numerically intensive task, which limits its application to complex systems. To address this issue, machine learning (ML) models can be used as surrogates to find the ground-state charge density and reduce the computational overheads. We develop a grid-centred structural representation, based on Jacobi and Legendre polynomials combined with a linear regression, to accurately learn the converged DFT charge density. This integrates into a ML pipeline that can return any density-dependent observable, including energy and forces, at the quality of a converged DFT calculation, but at a fraction of the computational cost. Fast scanning of energy landscapes and producing starting densities for the DFT self-consistent cycle are among the applications of our scheme.

Bruno Focassio
Bruno Focassio
PhD candidate
Nanoscience and Advanced Materials

My research interests include machine learning, data science, data mining, and computational materials science.